Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1063796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122567

RESUMO

Because they enable for the modification of both viscosity and osmolarity, sugars have been used as a biophysical probe of voltage-gated K-channels for a while. Viscosity variations made it possible to measure the pore sizes in large and small conductance K-channels using techniques similar to those used in the 1980s to study the gramicidin A channel. These analyses led to the finding that the size of the internal mouth appears to be the primary cause of the conductance differences between Shaker-like channels and large conductance BK-channels. As an osmotic agent, adding sugar unilaterally causes streaming potentials that indicate H2O/K+ cotransport across the BK-channel pore. Osmotic experiments on Shaker K-channels suggest that the pore gate operation and the slow inactivation displace comparable amounts of water. Functionally isolated voltage sensors allow estimation of individual osmotic work for each voltage sensing charge during voltage-activation, reporting dramatic internal and external remodeling of the Voltage Sensing Domain´s solvent exposed surfaces. Remarkably, each charge of the VSD appears to take a unique trajectory. Thus, manipulation of viscosity and osmolarity, together with 3D structures, brings in solid grounds to harmonize function and structure in membrane proteins such as K-channels and, in a wider scope, other structurally dynamic proteins.

2.
Proc Natl Acad Sci U S A ; 119(25): e2204620119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704760

RESUMO

In neurosecretion, allosteric communication between voltage sensors and Ca2+ binding in BK channels is crucially involved in damping excitatory stimuli. Nevertheless, the voltage-sensing mechanism of BK channels is still under debate. Here, based on gating current measurements, we demonstrate that two arginines in the transmembrane segment S4 (R210 and R213) function as the BK gating charges. Significantly, the energy landscape of the gating particles is electrostatically tuned by a network of salt bridges contained in the voltage sensor domain (VSD). Molecular dynamics simulations and proton transport experiments in the hyperpolarization-activated R210H mutant suggest that the electric field drops off within a narrow septum whose boundaries are defined by the gating charges. Unlike Kv channels, the charge movement in BK appears to be limited to a small displacement of the guanidinium moieties of R210 and R213, without significant movement of the S4.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta , Arginina/metabolismo , Ativação do Canal Iônico/genética , Simulação de Dinâmica Molecular , Mutação
4.
Biochem Soc Trans ; 49(5): 2211-2219, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623379

RESUMO

Living organisms require detecting the environmental thermal clues for survival, allowing them to avoid noxious stimuli or find prey moving in the dark. In mammals, the Transient Receptor Potential ion channels superfamily is constituted by 27 polymodal receptors whose activity is controlled by small ligands, peptide toxins, protons and voltage. The thermoTRP channels subgroup exhibits unparalleled temperature dependence -behaving as heat and cold sensors. Functional studies have dissected their biophysical features in detail, and the advances of single-particle Cryogenic Electron microscopy provided the structural framework required to propose detailed channel gating mechanisms. However, merging structural and functional evidence for temperature-driven gating of thermoTRP channels has been a hard nut to crack, remaining an open question nowadays. Here we revisit the highlights on the study of heat and cold sensing in thermoTRP channels in the light of the structural data that has emerged during recent years.


Assuntos
Ativação do Canal Iônico , Termodinâmica , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Conformação Proteica , Temperatura
5.
Mar Drugs ; 18(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114777

RESUMO

κ-Conotoxin-PVIIA (κ-PVIIA) is a potassium-channel blocking peptide from the venom of the fish-hunting snail, Conus purpurascens, which is essential for quick prey's excitotoxic immobilization. Binding of one κ-PVIIA to Shaker K-channels occludes the K+-conduction pore without additional conformational effects. Because this 27-residue toxin is +4-charged at neutral pH, we asked if electrostatic interactions play a role in binding. With Voltage-Clamp electrophysiology, we tested how ionic strength (IS) affects κ-PVIIA blockade to Shaker. When IS varied from ~0.06 to ~0.16 M, the dissociation constant for open and closed channels increased by ~5- and ~16-fold, respectively. While the association rates decreased equally, by ~4-fold, in open and closed channels, the dissociation rates increased 4-5-fold in closed channels but was IS-insensitive in open channels. To explain this differential IS-dependency, we propose that the bound κ-PVIIA wobbles, so that in open channels the intracellular environment, via ion-conduction pore, buffers the imposed IS-changes in the toxin-channel interface. A Brønsted-Bjerrum analysis on the rates predicts that if, instead of fish, the snail preyed on organisms with seawater-like lymph ionic composition, a severely harmless toxin, with >100-fold diminished affinity, would result. Thus, considerations of the native ionic environment are essential for conotoxins evaluation as pharmacological leads.


Assuntos
Conotoxinas/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Conotoxinas/química , Oócitos , Concentração Osmolar , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Superfamília Shaker de Canais de Potássio/química , Xenopus laevis
6.
bioRxiv ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33106803

RESUMO

SARS-CoV-2 ORF3a is believed to form ion channels, which may be involved in the modulation of virus release, and has been implicated in various cellular processes like the up-regulation of fibrinogen expression in lung epithelial cells, downregulation of type 1 interferon receptor, caspase-dependent apoptosis, and increasing IFNAR1 ubiquitination. ORF3a assemblies as homotetramers, which are stabilized by residue C133. A recent cryoEM structure of a homodimeric complex of ORF3a has been released. A lower-resolution cryoEM map of the tetramer suggests two dimers form it, arranged side by side. The dimer's cryoEM structure revealed that each protomer contains three transmembrane helices arranged in a clockwise configuration forming a six helices transmembrane domain. This domain's potential permeation pathway has six constrictions narrowing to about 1 Å in radius, suggesting the structure solved is in a closed or inactivated state. At the cytosol end, the permeation pathway encounters a large and polar cavity formed by multiple beta strands from both protomers, which opens to the cytosolic milieu. We modeled the tetramer following the arrangement suggested by the low-resolution tetramer cryoEM map. Molecular dynamics simulations of the tetramer embedded in a membrane and solvated with 0.5 M of KCl were performed. Our simulations show the cytosolic cavity is quickly populated by both K+ and Cl-, yet with different dynamics. K+ ions moved relatively free inside the cavity without forming proper coordination sites. In contrast, Cl- ions enter the cavity, and three of them can become stably coordinated near the intracellular entrance of the potential permeation pathway by an inter-subunit network of positively charged amino acids. Consequently, the central cavity's electrostatic potential changed from being entirely positive at the beginning of the simulation to more electronegative at the end.

7.
Front Pharmacol ; 11: 1040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760273

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.

8.
Proc Natl Acad Sci U S A ; 117(33): 20298-20304, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747539

RESUMO

In mammals, temperature-sensitive TRP channels make membrane conductance of cells extremely temperature dependent, allowing the detection of temperature ranging from noxious cold to noxious heat. We progressively deleted the distal carboxyl terminus domain (CTD) of the cold-activated melastatin receptor channel, TRPM8. We found that the enthalpy change associated with channel gating is proportional to the length of the CTD. Deletion of the last 36 amino acids of the CTD transforms TRPM8 into a reduced temperature-sensitivity channel (Q10 ∼4). Exposing the intracellular domain to a denaturing agent increases the energy required to open the channel indicating that cold drives channel gating by stabilizing the folded state of the CTD. Experiments in the presence of an osmoticant agent suggest that channel gating involves a change in solute-inaccessible volume in the CTD of ∼1,900 Å3 This volume matches the void space inside the coiled coil according to the cryogenic electron microscopy structure of TRPM8. The results indicate that a folding-unfolding reaction of a specialized temperature-sensitive structure is coupled to TRPM8 gating.


Assuntos
Domínios Proteicos , Dobramento de Proteína , Canais de Cátion TRPM/química , Animais , Temperatura Baixa , Microscopia Crioeletrônica , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oócitos , Conformação Proteica , Canais de Cátion TRPM/metabolismo , Termodinâmica , Xenopus laevis
9.
Elife ; 82019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31271355

RESUMO

In silico and in vitro studies have made progress in understanding protein-protein complex formation; however, the molecular mechanisms for their dissociation are unclear. Protein-protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.


Assuntos
Charibdotoxina/metabolismo , Íons/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Animais , Aracnídeos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Ligação Proteica , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 115(32): 8203-8208, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038023

RESUMO

Neurons encode electrical signals with critically tuned voltage-gated ion channels and enzymes. Dedicated voltage sensor domains (VSDs) in these membrane proteins activate coordinately with an unresolved structural change. Such change conveys the transmembrane translocation of four positively charged arginine side chains, the voltage-sensing residues (VSRs; R1-R4). Countercharges and lipid phosphohead groups likely stabilize these VSRs within the low-dielectric core of the protein. However, the role of hydration, a sign-independent charge stabilizer, remains unclear. We replaced all VSRs and their neighboring residues with negatively charged aspartates in a voltage-gated potassium channel. The ensuing mild functional effects indicate that hydration is also important in VSR stabilization. The voltage dependency of the VSR aspartate variants approached the expected arithmetic summation of charges at VSR positions, as if negative and positive side chains faced similar pathways. In contrast, aspartates introduced between R2 and R3 did not affect voltage dependence as if the side chains moved outside the electric field or together with it, undergoing a large displacement and volumetric remodeling. Accordingly, VSR performed osmotic work at both internal and external aqueous interfaces. Individual VSR contributions to volumetric works approached arithmetical additivity but were largely dissimilar. While R1 and R4 displaced small volumes, R2 and R3 volumetric works were massive and vectorially opposed, favoring large aqueous remodeling during VSD activation. These diverse volumetric works are, at least for R2 and R3, not compatible with VSR translocation across a unique stationary charge transfer center. Instead, VSRs may follow separated pathways across a fluctuating low-dielectric septum.


Assuntos
Ácido Aspártico/química , Ativação do Canal Iônico , Domínios Proteicos , Superfamília Shaker de Canais de Potássio/química , Potenciais de Ação , Sequência de Aminoácidos/genética , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/genética , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos , Osmose , Técnicas de Patch-Clamp , Superfamília Shaker de Canais de Potássio/genética , Eletricidade Estática , Água/química , Xenopus
11.
Phys Biol ; 15(2): 021001, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29135465

RESUMO

Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.


Assuntos
Temperatura Alta , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Termodinâmica
12.
Neurotox Res ; 32(4): 614-623, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28695546

RESUMO

The Na+/myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.


Assuntos
Córtex Cerebral/metabolismo , Colinérgicos/farmacologia , Ácido Glutâmico/metabolismo , Simportadores/metabolismo , Acetilcolina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Córtex Cerebral/efeitos dos fármacos , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 16/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Feto/efeitos dos fármacos , Camundongos , Mosaicismo , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Simportadores/genética , Trissomia/genética
13.
J Gen Physiol ; 148(4): 277-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27619418

RESUMO

Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K(+) channels discriminate K(+) over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K(+) channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K(+) channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K(+) channels, accounting for their diversity in unitary conductance.


Assuntos
Canais de Potássio/química , Canais de Potássio/metabolismo , Potássio/metabolismo , Transporte de Íons/fisiologia , Modelos Moleculares , Conformação Proteica
14.
Annu Rev Biophys ; 45: 371-98, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27297398

RESUMO

The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.


Assuntos
Canais de Potencial de Receptor Transitório/metabolismo , Regulação Alostérica , Animais , Humanos , Ativação do Canal Iônico , Ligantes , Ligação Proteica , Temperatura , Termodinâmica , Canais de Potencial de Receptor Transitório/química
15.
Mol Pharmacol ; 90(3): 300-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27335334

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.


Assuntos
Canais de Cátion TRPV/química , Canais de Cátion TRPV/farmacologia , Animais , Sítios de Ligação , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Lipídeos/farmacologia , Relação Estrutura-Atividade
16.
Sci Rep ; 6: 19893, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26831782

RESUMO

Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

17.
J Gen Physiol ; 146(2): 133-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26216859

RESUMO

K channels mediate the selective passage of K(+) across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K(+) transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker's reported ∼ 20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼ 0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K(+) is set to ∼ 4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼ 8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K(+)], beyond that of P475D, suggesting an ∼ 200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum conductance of the large conductance K (BK) channel (the K channel of highest conductance), reducing the energy gap between their K(+) transport rates to ∼ 1 kT. Thus, although Shaker's pore sustains ion translocation as the BK channel's does, higher energetic costs of ion stabilization or higher friction with the ion's rigid hydration cage in its narrower aqueous cavity may entail higher resistance.


Assuntos
Ativação do Canal Iônico , Superfamília Shaker de Canais de Potássio/química , Potenciais de Ação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus
18.
Biophys J ; 103(6): 1198-207, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995492

RESUMO

Potassium channels exhibit a large diversity of single-channel conductances. Shaker is a low-conductance K-channel in which Pro475→Asp, a single-point mutation near the internal pore entrance, promotes 6- to 8-fold higher unitary current. To assess the mechanism for this higher conductance, we measured Shaker-P475D single-channel current in a wide range of symmetrical K(+) concentrations and voltages. Below 300 mM K(+), the current-to-voltage relations (i-V) showed inward rectification that disappeared at 1000 mM K(+). Single-channel conductance reached a maximum of ∼190 pS at saturating [K(+)], a value 4- to 5-fold larger than that estimated for the native channel. Intracellular Mg(2+) blocked this variant with ∼100-fold higher affinity. Near zero voltage, blockade was competitively antagonized by K(+); however, at voltages >100 mV, it was enhanced by K(+). This result is consistent with a lock-in effect in a single-file diffusion regime of Mg(2+) and K(+) along the pore. Molecular-dynamics simulations revealed higher K(+) density in the pore, especially near the Asp-475 side chains, as in the high-conductance MthK bacterial channel. The molecular dynamics also showed that K(+) ions bound distally can coexist with other K(+) or Mg(2+) in the cavity, supporting a lock-in mechanism. The maximal K(+) transport rate and higher occupancy could be due to a decrease in the electrostatic energy profile for K(+) throughout the pore, reducing the energy wells and barriers differentially by ∼0.7 and ∼2 kT, respectively.


Assuntos
Condutividade Elétrica , Magnésio/farmacologia , Mutação Puntual , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Simulação de Dinâmica Molecular , Porosidade , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Eletricidade Estática , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...